Congestive heart failure clinical assessment

Jump to navigation Jump to search


Resident
Survival
Guide
Congestive Heart Failure Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Systolic Dysfunction
Diastolic Dysfunction
HFpEF
HFrEF

Causes

Differentiating Congestive heart failure from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Clinical Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Cardiac MRI

Echocardiography

Exercise Stress Test

Myocardial Viability Studies

Cardiac Catheterization

Other Imaging Studies

Other Diagnostic Studies

Treatment

Invasive Hemodynamic Monitoring

Medical Therapy:

Summary
Acute Pharmacotherapy
Chronic Pharmacotherapy in HFpEF
Chronic Pharmacotherapy in HFrEF
Diuretics
ACE Inhibitors
Angiotensin receptor blockers
Aldosterone Antagonists
Beta Blockers
Ca Channel Blockers
Nitrates
Hydralazine
Positive Inotropics
Anticoagulants
Angiotensin Receptor-Neprilysin Inhibitor
Antiarrhythmic Drugs
Nutritional Supplements
Hormonal Therapies
Drugs to Avoid
Drug Interactions
Treatment of underlying causes
Associated conditions

Exercise Training

Surgical Therapy:

Biventricular Pacing or Cardiac Resynchronization Therapy (CRT)
Implantation of Intracardiac Defibrillator
Ultrafiltration
Cardiac Surgery
Left Ventricular Assist Devices (LVADs)
Cardiac Transplantation

ACC/AHA Guideline Recommendations

Initial and Serial Evaluation of the HF Patient
Hospitalized Patient
Patients With a Prior MI
Sudden Cardiac Death Prevention
Surgical/Percutaneous/Transcather Interventional Treatments of HF
Patients at high risk for developing heart failure (Stage A)
Patients with cardiac structural abnormalities or remodeling who have not developed heart failure symptoms (Stage B)
Patients with current or prior symptoms of heart failure (Stage C)
Patients with refractory end-stage heart failure (Stage D)
Coordinating Care for Patients With Chronic HF
Quality Metrics/Performance Measures

Implementation of Practice Guidelines

Congestive heart failure end-of-life considerations

Specific Groups:

Special Populations
Patients who have concomitant disorders
Obstructive Sleep Apnea in the Patient with CHF
NSTEMI with Heart Failure and Cardiogenic Shock

Congestive heart failure clinical assessment On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Congestive heart failure clinical assessment

CDC on Congestive heart failure clinical assessment

Congestive heart failure clinical assessment in the news

Blogs on Congestive heart failure clinical assessment

Directions to Hospitals Treating Congestive heart failure clinical assessment

Risk calculators and risk factors for Congestive heart failure clinical assessment

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Edzel Lorraine Co, D.M.D., M.D. [2].

Overview

Clinical assessment of a patient based on a thorough history taking and physical examination is still the cornerstone in diagnosing heart failure. Based on the gathered data, patients can be assessed if he has an underlying heart condition which necessitates a disease-specific therapy such as amyloid heart disease, a cardiomyopathy, or a developing decompensated heart failure. It is important to investigate for presence of heart congestion so as to treat it the at the earliest stage to avoid deterioration in the quality of life and prognosis.

Diagnostic algorithm for heart failure

 
 
 
 
 
 
 
 
Suspected heart failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NT-proBNP ≥ 125 pg/mL or BNP ≥ 35 pg/mL

or if HF strongly suspected

or if NT-proBNP/BNP unavailable
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Echocardiography
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abnormal findings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hear failure unlikely, other dignosis shoulb be considered
 
NO
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Heart failure confirmed based on LVEF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LVEF≤ 40%
 
 
 
 
LVEF=41-49%
 
 
 
 
LVEF≥50%
The above table adopted from 2021 ESC Guideline

[1]

Diagnostic of HF and EF-Based Classification.

Diagnostic Algorithm for HF and EF-Based Classification

[2] [3]

Criteria for definition of advanced heart failure

1. Severe and persistent symptoms of heart failure NYHA class III-IV
2. Severe cardiac dysfunction is defined by at least one of the following:

3. Episodes of pulmonary or systemic congestion requiring high-dose i.v. diuretics (or diuretic combinations) or episodes of low output requiring inotropes or vasoactive drugs or malignant arrhythmias causing >1 unplanned visit or hospitalization in the last 12 months
4. Severe impairment of exercise capacity with inability to exercise or low 6MWT distance (<300 m) or pVO2 <12 mL/kg/min or <50% predicted value, estimated to be of cardiac origin[1]

Clinical Assessment

Framingham Criteria

Major Criteria

Minor Criteria

Boston Criteria of Congestive Heart Failure

Category I: History

Category II: Physical Examination

HFpEF

The [H2FPEF https://www.mdcalc.com/calc/10105/h2fpef-score-for-heart-failure-with-preserved-ejection-fraction] can help diagnose[3].

Category III: Chest Radiography

No more than 4 points are allowed from each of three categories; hence the composite score (the sum of the subtotal from each category) has a possible maximum of 12 points.

The diagnosis of heart failure is classified as "definite" at a score of 8 to 12 points, "possible" at a score of 5 to 7 points, and "unlikely" at a score of 4 points or less.

2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

INITIAL AND SERIAL EVALUATION (DO NOT EDIT) [2]

Clinical Assessment: History and Physical Examination (DO NOT EDIT) [2]

Class I
"1. In patients with HF, vital signs and evidence of clinical congestion should be assessed at each encounter to guide overall management, including adjustment of diuretics and other medications.[4][5][6][7][8][9] (Level of Evidence: B-NR) "
"2. In patients with symptomatic HF, clinical factors indicating the presence of advanced HF should be sought via the history and physical examination. [10][11][12][13][14][15] (Level of Evidence: B-NR) "
"3. In patients with cardiomyopathy, a 3-generation family history should be obtained or updated when assessing the cause of the cardiomyopathy to identify possible inherited disease. [16][17] (Level of Evidence: B-NR) "
"4. In patients presenting with HF, a thorough history and physical examination should direct diagnostic strategies to uncover specific causes that may warrant disease-specific management. [18][19] (Level of Evidence: B-NR) "
"4. In patients presenting with HF, a thorough history and physical examination should be obtained and performed to identify cardiac and noncardiac disorders, lifestyle and behavioral factors, and social determinants of health that might cause or accelerate the development or progression of HF. ([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C-EO]) "

Initial Laboratory and Electrocardiographic Testing (DO NOT EDIT) [2]

Class I
"1. For patients presenting with HF, the specific cause of HF should be explored using additional laboratory testing for appropriate management. [20][21][22][23][24][25][26][27] (Level of Evidence: B-NR) "
"2. For patients who are diagnosed with HF, laboratory evaluation should include complete blood count, urinalysis, serum electrolytes, blood urea nitrogen, serum creatinine, glucose, lipid profile, liver function tests, iron studies, and thyroid-stimulating hormone to optimize management. (Level of Evidence: C-EO) "
"3. For all patients presenting with HF, a 12-lead ECG should be performed at the initial encounter to optimize management. (Level of Evidence: C-EO) "

Use of Biomarkers for Prevention, Initial Diagnosis, and Risk Stratification (DO NOT EDIT) [2]

Class I
"1. In patients presenting with dyspnea, measurement of B-type natriuretic peptide (BNP) or N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) is useful to support a diagnosis or exclusion of HF. [28][29][30][31][32][33][34][35][36][37][38][39] (Level of Evidence: A) "
"2.In patients with chronic HF, measurements of BNP or NT-proBNP levels are recommended for risk stratification. [38][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56] (Level of Evidence: A) "
"3. In patients hospitalized for HF, measurement of BNP or NT-proBNP levels at admission is recommended to establish prognosis. [38][40][41][42][43][44][45][46] (Level of Evidence: A) "
Class IIa
"4. In patients at risk of developing HF, BNP or NT-proBNP-based screening followed by team-based care, including a cardiovascular specialist, can be useful to prevent the development of LV dysfunction or new-onset HF. [57][58] (Level of Evidence: B-R) "
"5.In patients hospitalized for HF, a predischarge BNP or NT-proBNP level can be useful to inform the trajectory of the patient and establish a postdischarge prognosis. [41][44][47][48][49][50][51][52][53][54][55][56] (Level of Evidence: B-NR) "

Genetic Evaluation and Testing 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class I
"1. In first-degree relatives of selected patients with genetic or inherited cardiomyopathies, genetic screening and counseling are recommended to detect cardiac disease and prompt consideration of treatments to decrease HF progression and sudden death. [16][17] (Level of Evidence: B-NR) "
Class IIa
"1. In select patients with nonischemic cardiomyopathy, referral for genetic counseling and testing is reasonable to identify conditions that could guide treatment for patients and family members.[59][60] (Level of Evidence: B-NR) "

Evaluation With Cardiac Imaging 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class I
"1. In patients with suspected or new-onset HF, or those presenting with acute decompensated HF, a chest X-ray should be performed to assess heart size and pulmonary congestion and to detect alternative cardiac, pulmonary, and other diseases that may cause or contribute to the patient's symptoms. [61][62](Level of Evidence: C-LD) "
"2. In patients with suspected or newly diagnosed HF, transthoracic echocardiography (TTE) should be performed during initial evaluation to assess cardiac structure and function. [63] (Level of Evidence: C-LD) "
"3. In patients with HF who have had a significant clinical change, or who have received GDMT and are being considered for invasive procedures or device therapy, repeat measurement of EF, degree of structural remodeling, and valvular function are useful to inform therapeutic interventions.[64][65][66][67] (Level of Evidence: C-LD) "
"4. In patients for whom echocardiography is inadequate, alternative imaging (eg, cardiac magnetic resonance [CMR], cardiac computed tomography [CT], radionuclide imaging) is recommended for assessment of LVEF.[68][69][70][71][72][73][74][75](Level of Evidence: C-LD) "
Class IIa
"5. In patients with HF or cardiomyopathy, CMR can be useful for diagnosis or management. [76][77][78][79][80][81][82][83] (Level of Evidence:B-NR) "
"6. In patients with HF, an evaluation for possible ischemic heart disease can be useful to identify the cause and guide management. [84][85][86][87] (Level of Evidence:B-NR) "
Class IIb
"7. In patients with HF and coronary artery disease (CAD) who are candidates for coronary revascularization, noninvasive stress imaging (stress echocardiography, single-photon emission CT [SPECT], CMR, or positron emission tomography [PET] may be considered for detection of myocardial ischemia to help guide coronary revascularization. [88][89][90][91][92] (Level of Evidence:B-NR) "
Class III (No Benefit)
"8. In patients with HF in the absence of 1) clinical status change, 2) treatment interventions that might have had a significant effect on cardiac function, or 3) candidacy for invasive procedures or device therapy, routine repeat assessment of LV function is not indicated. (Level of Evidence:C-EO) "

Invasive Evaluation 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class IIa
"1. In patients with HF, endomyocardial biopsy may be useful when a specific diagnosis is suspected that would influence therapy. [93][94] (Level of Evidence:B-NR) "
"2. In selected patients with HF with persistent or worsening symptoms, signs, diagnostic parameters, and in whom hemodynamics are uncertain, invasive hemodynamic monitoring can be useful to guide management. (Level of Evidence:C-EO) "
Class III (No Benefit)
"3. In patients with HF, routine use of invasive hemodynamic monitoring is not recommended. [95][96] (Level of Evidence:B-R) "
Class III (Harm)
"2. For patients undergoing routine evaluation of HF, endomyocardial biopsy should not be performed because of the risk of complications. [97][98](Level of Evidence:C-LD) "

Wearables and Remote Monitoring (Including Telemonitoring and Device Monitoring) 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class IIb
"1. In selected adult patients with NYHA class III HF and history of a HF hospitalization in the past year or elevated natriuretic peptide levels, on maximally tolerated stable doses of GDMT with optimal device therapy, the usefulness of wireless monitoring of PA pressure by an implanted hemodynamic monitor to reduce the risk of subsequent HF hospitalization is uncertain. [99][100][101][102] (Level of Evidence:B-R) "
Value Statement: Uncertain Value
"2. In patients with NYHA class III HF with a HF hospitalization within the previous year, wireless monitoring of the PA pressure by an implanted hemodynamic monitor provides uncertain value. [102][103][104][105] (Level of Evidence:B-NR) "

Exercise and Functional Capacity Testing 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class I
"1. In patients with HF, assessment and documentation of NYHA functional classification are recommended to determine eligibility for treatments. [106][107] (Level of Evidence: C-LD) "
"2. In selected ambulatory patients with HF, cardiopulmonary exercise testing (CPET) is recommended to determine appropriateness of advanced treatments (eg, LVAD, heart transplant). [108][109][110][111][112](Level of Evidence: C-LD) "
Class IIa
"3. In ambulatory patients with HF, performing a CPET or 6-minute walk test is reasonable to assess functional capacity. [108][109][113][114][115][116][117][118][119][120] (Level of Evidence: C-LD) "
"4. In ambulatory patients with unexplained dyspnea, CPET is reasonable to evaluate the cause of dyspnea. [121][122](Level of Evidence: C-LD) "

Initial and Serial Evaluation: Clinical Assessment: HF Risk Scoring 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [2]

Class IIa
"1. In ambulatory or hospitalized patients with HF, validated multivariable risk scores can be useful to estimate subsequent risk of mortality. [123][124][125][126][127][128][129][130][131][132][133][134][135][48] (Level of Evidence: B-NR) "

Patients at risk for HF, Stage A.

Primary prevention recommendations for patients at risk for HF. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. In patients with hypertension, blood pressure should be controlled in accordance with GDMT for hypertension to prevent symptomatic HF (Level of Evidence A).
"2. In patients with type 2 diabetes and either established CVD or at high cardiovascular risk, SGLT2i should be used to prevent hospitalization for HF (Level of Evidence A).
"3. In the general population, healthy lifestyle habits such as regular physical activity, maintaining normal weight, healthy dietary patterns, and avoiding smoking are helpful to reduce future risk of HF (Level of Evidence B-NR).
Class IIa
"1. For patients at risk of developing HF, natriuretic peptide biomarker-based screening followed by team-based care, including a cardiovascular specialist optimizing GDMT, can be useful to prevent the development of LV dysfunction (systolic or diastolic) or new-onset HF (Level of Evidence: B-R).
"2. In the general population, validated multivariable risk scores can be useful to estimate subsequent risk of incident HF (Level of Evidence: B-NR).

[2]

Stage B: Patients with PRE- HF

Management of patients in stage B. Preventing heart failure in pre-HF patients. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. In patients with LVEF ≤40%, ACEi should be used to prevent symptomatic HF and reduce mortality (Level of Evidence: A) "
"2.   In patients with a recent or remote history of MI or ACS, statins should be used to prevent symptomatic HF and adverse cardiovascular events. (Level of Evidence: A) "
"3. In patients with a recent MI and LVEF ≤40% who are intolerant to ACEi, ARB should be used to prevent symptomatic HF and reduce mortality (Level of Evidence: B-R) "
"4. In patients with a recent or remote history of MI or acute coronary syndrome (ACS) and LVEF ≤40%, evidence-based beta blockers should be used to reduce mortality (Level of Evidence: B-R) "
"5. In patients who are at least 40 days post-MI with LVEF ≤30% and NYHA class I symptoms while obtaining GDMT and have a reasonable expectation of noteworthy survival for >1 year, an ICD is suggested for primary prevention of sudden cardiac death (SCD) to reduce total mortality (Level of Evidence: B-R) "
"6. In patients with LVEF ≤40%, beta blockers should be used to prevent symptomatic HF. (Level of Evidence: C-LD) "
Class III (Harm)
"1. In patients with LVEF <50%, thiazolidinediones should not be used because they raise the risk of HF, including hospitalizations(Level of Evidence: B-R) "
"2. In patients with LVEF <50%, nondihydropyridine calcium channel blockers with negative inotropic effects may be harmful.(Level of Evidence: C- LD) "

[2]

Stage C

Non-pharmacological Therapy

Self-Care Support in HF. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. Patients with HF should receive care from multidisciplinary units to facilitate the performance of GDMT, address possible barriers to self-care, decrease the risk of succeeding rehospitalization for HF, and enhance survival (Level of Evidence A)"
"2. Patients with HF should receive specific education and support to facilitate HF self-care in a multidisciplinary manner (Level of Evidence B-R)".
Class IIa
"1. In patients with HF, vaccinating against respiratory illnesses is reasonable to reduce mortality (Level of Evidence B-R)".
"2. In adults with HF, screening for depression, social isolation, frailty, and low health literacy as risk factors for poor self-care is reasonable to improve management (Level of Evidence B-R)".

[2]

Dietary Sodium Restriction in patients on Stage C. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class IIa
"1. For patients with stage C HF, avoiding excessive sodium intake is reasonable to reduce congestive symptoms. (Level of Evidence C-LD)".

[2]

The AHA currently advises cutting sodium intake to under 2300 mg per day to promote overall cardiovascular health, yet there are no studies that back up this amount of limitation. When combined with dietary counseling, the DASH diet can achieve salt restriction without sacrificing nutritional adequacy and may be linked to fewer hospitalizations for HF. Also, it is high in antioxidants and potassium. [2]

Activity, Exercise Prescription, and Cardiac Rehabilitation. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. For patients with HF who are competent of participating, exercise training (or regular physical activity) is advised to enhance the functional status, exercise routine, and QOL (Level of Evidence A)"
Class IIa
"1. In patients with HF, a cardiac rehabilitation program can be helpful to improve functional capacity, exercise tolerance, and health-related quality of life (Level of Evidence B-NR)".

[2]

Diuretics and Decongestion Strategies in Patients With HF. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. In patients with HF who have fluid retention, diuretics are recommended to relieve conges-tion, improve symptoms, and prevent worsening HF (Level of Evidence B -NR)"
"2. For patients with HF and congestive symptoms, the addition of a thiazide (eg, metolazone) to therapy with a loop diuretic should be dedicated for patients who do not react to moderate- or high-dose loop diuretics to minimize electrolyte anomalies (Level of Evidence B-NR)".

[2]

The majority of HF patients utilize loop diuretics as their first diuretic choice. Patients with hypertension, HF, and modest fluid retention may be candidates for thiazide diuretics such as chlorthalidone or hydrochlorothiazide. In patients with persistent edema that does not respond to loop diuretics alone, metolazone or chlorothiazide may be given in addition to loop diuretics. Diuretics should never be administered alone; instead, they should be used in conjunction with other GDMT for HF to lower hospitalization rates and increase survival[2].

Pharmacological Treatment for HFrEF. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Renin-Angiotensin System Inhibition With ACEi or ARB or ARNi

Class I
"1. In patients with HFrEF and NYHA class II to III symptoms, the use of ARNi is recommended to reduce morbidity and mortality (Level of Evidence: A) "
"2.  In patients with previous or current symptoms of chronic HFrEF, the use of ACEi is beneficial to reduce morbidity and mortality when the use of ARNi is not feasible (Level of Evidence: A) "
"3. In patients with previous or current symptoms of chronic HFrEF who are intolerant to ACEi because of cough or angioedema and when the use of ARNi is not feasible, the use of ARB is recommended to reduce morbidity and mortality(Level of Evidence: A) "
Value Statement: High Value (A): "4. In patients with previous or current symptoms of chronic HFrEF, in whom ARNi is not feasible, treatment with an ACEi or ARB provides high economic value
"5. In patients with chronic symptomatic HFrEF NYHA class II or III who tolerate an ACEi or ARB, replacement by an ARNi is recommended to further reduce morbidity and mortality(Level of Evidence: B-R) "
Value Statement: High Value (A): In patients with chronic symptomatic HFrEF, treatment with an ARNi instead of an ACEi provides high economic value.
Class III (Harm)
"1. ARNi should not be administered concomitantly with ACEi or within 36 hours of the last dose of an ACEi(Level of Evidence: B-R) "
"2. ARNi should not be administered to patients with any history of angioedema.(Level of Evidence: C- LD) "
"3. ACEi should not be administered to patients with any history of angioedema.(Level of Evidence: C- LD) "

[2]

Beta Blockers

Class I
"1. In patients with HFrEF, with current or previous symptoms, use of 1 of the 3 beta blockers proven to reduce mortality (eg, bisoprolol, carvedilol, sustained-release metoprolol succinate) is recommended to reduce mortality and hospitalization (Level of Evidence A)"
Value Statement: High Value (A): In patients with HFrEF, with current or previous symptoms, beta-blocker therapy provides high economic value

[2]

Mineralocorticoid Receptor Antagonists

Class I
"1. In patients with HFrEF and NYHA class II to IV symptoms, an MRA (spironolactone or eplerenone) is recommended to reduce morbidity and mortality, if eGFR is >30 mL/min/1.73 m2 and serum potassium is <5.0 mEq/L. Careful monitoring of potassium, renal function, and diuretic dosing should be performed at initiation and closely monitored thereafter to minimize risk of hyperkalemia and renal insufficiency(Level of Evidence A)"
Value Statement: High Value (A): In patients with HFrEF and NYHA class II to IV symptoms, MRA therapy provides high economic value.

[2]

Class III (Harm)
"1. ARNi should not be administered concomi-tantly with ACEi or within 36 hours of the last dose of an ACEi(Level of Evidence: B-R) "

[2]

Sodium-Glucose Cotransporter 2 Inhibitors

Class I
"1. In patients with symptomatic chronic HFrEF, SGLT2i are advised to decrease hospitalization for HF and cardiovascular mortality, irrespective of the existence of type 2 diabetes(Level of Evidence A)"
Value Statement: High Value (A): In patients with symptomatic chronic HFrEF, SGLT2i medicine supplies medium economic value

[2]

Hydralazine and Isosorbide Dinitrate

Class I
"1. In patients with HFrEF and NYHA class II to IV symptoms, an MRA (spironolactone or eplerenone) is recommended to reduce morbidity and mortality, if eGFR is >30 mL/min/1.73 m2 and serum potassium is <5.0 mEq/L. Careful monitoring of potassium, renal function, and diuretic dosing should be performed at initiation and closely monitored thereafter to minimize risk of hyperkalemia and renal insufficiency(Level of Evidence A)"
Value Statement: High Value (B-NR): For patients self-identified as African American with NYHA class III to IV HFrEF who are receiving optimal medical therapy with ACEi or ARB, beta-blockers, and MRA, the combination of hydralazine and isosorbide dinitrate provides high economic value

[2]

Class IIb
"1. In patients with existing or prior symptomatic HFrEF who cannot be given first-line agents, such as ARNi, ACEi, or ARB, because of drug intolerance or renal insufficiency, a mixture of hydralazine and isosorbide dinitrate might be considered to reduce morbidity and mortality (Level of Evidence C-LD)".

[2]

Other drugs to consider

Class IIb
"1. In patients with HF class II to IV symptoms, omega-3 polyunsaturated fatty acid (PUFA) supplementation may be suitable to use as adjunctive therapy to decrease mortality and cardiovascular hospitalization (Level of Evidence B-R)".
''2. In patients with HF who experience hyperkalemia (serum potassium level ≥5.5 mEq/L) while taking a renin-angiotensin-aldosterone system inhibitor (RAASi), the effectiveness of potassium binders (patiromer, sodium zirconium cyclosilicate) to improve outcomes by facilitating the continuation of RAASi therapy is uncertain (Level of Evidence B-R)"

[2]

Class III (No Benefit)
"1. In patients with chronic HFrEF without a precise indication (eg, venous thromboembolism [VTE], AF, a prior thromboembolic event, or a cardioembolic source), anticoagulation is not suggested(Level of Evidence: B-R) "

[2]

Drugs of Unproven Value or That May Worsen HF

Class III (No Benefit)
"1. In patients with HFrEF, dihydropyridine calcium channel-blocking drugs are not recommended therapy for HF(Level of Evidence: B-R) "
"2. In patients with HFrEF, vitamins, nutritional supplements, and hormonal therapy are not guided other than to rectify specific deficiencies (Level of Evidence: B-R) "

[2]

Class III (Harm)
"3. In patients with HFrEF, nondihydropyridine calcium channel-blocking drugs are not recommended(Level of Evidence: A) "
"4. In patients with HFrEF, class IC antiarrhythmic medications and dronedarone may increase the risk of mortality .(Level of Evidence: A) "
"5.In patients with HFrEF, thiazolidinediones increase the risk of worsening HF symptoms and hospitalization .(Level of Evidence: C- A) "
"6. In patients with type 2 diabetes and high cardiovascular risk, the dipeptidyl pepti-dase-4 (DPP-4) inhibitors saxagliptin and alogliptin increase the risk of HF hospitaliza-tion and should be avoided in patients with H F (Level of Evidence: B-R)''
"7.In patients with HFrEF, NSAIDs worsen HF symptoms and should be avoided or withdrawn whenever possible (Level of Evidence: B-NR)''

[2]

Guideline directed medical therapy: Sequencing and Uptitration

Class I
"1. In patients with HFrEF, titration of guideline-directed medication dosing to reach target doses demonstrated to be efficacious in RCTs is required, to diminish cardiovascular mortality and HF hospitalizations, unless not sufficiently accepted Level of Evidence A)"

[2]

Class IIa
" 2. In patients with HFrEF, titration, and optimization of guideline-directed medications as frequently as every 1 to 2 weeks relying on the patient’s symptoms, vital signs, and laboratory results can be helpful to optimize management (Level of Evidence C-LD)".

[2]

Additional Medical Therapies. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Management of Stage C: Ivabradine

Class IIa
" 1. For patients with symptomatic (NYHA class II to III) stable chronic HFrEF (LVEF ≤35%) who are obtaining GDMT, including a beta blocker at the maximum accepted dose, and who are in sinus rhythm with a heart rate of ≥70 bpm at rest, ivabradine can be advantageous to decrease HF hospitalizations and cardiovascular death(Level of Evidence B-R)".

[2]

Management of Stage C: Digoxin

Class IIb
" 1. In patients with symptomatic HFrEF despite GDMT (or who are unable to tolerate GDMT), digoxin might be considered to decrease hospitalizations for HF (Level of Evidence B-R)".

[2]

Management of Stage C: Soluble Guanylyl Cyclase Stimulators

Class IIb
" 1. In selected high-risk patients with HFrEF and recent worsening of HF already on GDMT, an oral soluble guanylate cyclase stimulator (vericiguat) may be considered to reduce HF hospitalization and cardiovascular death(Level of Evidence B-R)".

[2]

Device and Interventional Therapies for HFrEF

ICDs and CRTs

Class I
"1. In patients with nonischemic DCM or ischemic heart disease at least 40 days post-MI with LVEF ≤35% and NYHA class II or III symptoms on chronic GDMT, who keep a reasonable expectation of noteworthy survival for >1 year, ICD therapy is guided for primary prevention of SCD to decrease total mortality (Level of Evidence: A) "
"2. Value Statement: High Value (A):   A transvenous ICD delivers high financial value in the primary prevention of SCD particularly when the patient’s risk of death provoked by ventricular arrhythmia is deemed high and the risk of non arrhythmic death (either cardiac or noncardiac) is deemed low founded on the patient’s burden of comorbidities and functional status
"3.  In patients at least 40 days post-MI with LVEF ≤30% and NYHA class I symptoms while obtaining GDMT, who maintain a reasonable expectation of noteworthy survival for >1 year, ICD therapy is guided for primary prevention of SCD to reduce total mortality (Level of Evidence: B-R) "
"4. For patients who have LVEF ≤35%, sinus rhythm, left bundle branch block (LBBB) with a QRS duration ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT is demonstrated to decrease total mortality, decrease hospitalizations, and enhance symptoms and QOL(Level of Evidence: B-R) "
5. Value Statement: High Value (B-NR): "4. In patients with previous or current symptoms of chronic HFrEF, in whom ARNi is not feasible, treatment with an ACEi or ARB provides high economic value

[2]

Class IIa
" 6.   For patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS duration ≥150 ms, and NYHA class II, III, or ambulatory class IV symptoms on GDMT, CRT can be useful to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL (Level of Evidence B-R)".
'' 7. In patients with high-degree or complete heart block and LVEF of 36% to 50%, CRT is reasonable to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL (Level of Evidence B-R)''
 ''8. For patients who have LVEF ≤35%, sinus rhythm, LBBB with a QRS duration of 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT can be useful to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL (Level of Evidence B- NR)''
''9. In patients with AF and LVEF ≤35% on GDMT, CRT can be useful to reduce total mortality, improve symptoms and QOL, and increase LVEF, if: a) the patient requires ventricular pacing or otherwise meets CRT criteria and b) atrioventricular nodal ablation or pharmacologic rate control will allow near 100% ventricular pacing with CRT. (Level of Evidence B- NR)''
'' 10. For patients on GDMT who have LVEF ≤35% and are undergoing placement of a new or replacement device implantation with anticipated requirement for significant (>40%) ventricular pacing, CRT can be useful to reduce total mortality, reduce hospitalizations and improve symptoms and QOL (Level of Evidence B- NR)''
11. ''In patients with genetic arrhythmogenic cardiomyopathy with high-risk features of sudden death, with EF ≤45%, implantation of ICD is reasonable to decrease sudden death (Level of evidence B- NR)''

[2]

Class IIb
"12. For patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with QRS duration of 120 to 149 ms, and NYHA class III or ambulatory class IV on GDMT, CRT may be considered to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL (Level of Evidence:B-NR) "
''13. For patients who have LVEF ≤30%, ischemic cause of HF, sinus rhythm, LBBB with a QRS duration ≥150 ms, and NYHA class I symptoms on GDMT, CRT may be considered to reduce hospitalizations and improve symptoms and QOL (Level of Evidence:B-NR)''

[2]

Class III (No Benefit)
"14. In patients with QRS duration <120 ms, CRT is not recommended(Level of Evidence: B-R) "
"15. For patients with NYHA class I or II symptoms and non-LBBB pattern with QRS duration <150 ms, CRT is not recommended.(Level of Evidence: B-NR) "
"16. For patients whose comorbidities or frailty limit survival with a good functional capacity to <1 year, ICD and cardiac resynchronization therapy with defibrillation (CRT-D) are not indicated.(Level of Evidence: C- LD) "

[2]

Revascularization for CAD

Class I
"1. In selected patients with HF, reduced EF (EF ≤35%), and suitable coronary anatomy, surgical revascularization plus GDMT is worthwhile to improve symptoms, cardiovascular hospitalizations, and long-term all-cause mortality(Level of Evidence: B-R) "

[2]

Valvular Heart Diseases

Class I
"1. In patients with HF, VHD should be managed in a multidisciplinary manner in accordance with clinical practice guidelines for VHD to prevent worsening of HF and adverse clinical outcomes (Level of Evidence: B-R) "
''2. In patients with chronic severe secondary MR and HFrEF, optimization of GDMT is recommended before any intervention for secondary MR related to LV dysfunction (Level of Evidence: C-LD) "

[2]

HF With Mildly Reduced Ejection Fraction. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class IIa
" 1.  In patients with HFmrEF, SGLT2i can be beneficial in decreasing HF hospitalizations and cardiovascular (Level of Evidence B-R)".

[2]

Class IIb
"2. Among patients with current or previous symptomatic HFmrEF (LVEF, 41%–49%), use of evidence-based beta blockers for HFrEF, ARNi, ACEi, or ARB, and MRAs may be considered to reduce the risk of HF hospitalization and cardiovascular mortality, particularly among patients with LVEF on the lower end of this spectrum (Level of Evidence:B-NR) "

[2]

HF With Improved Ejection Fraction. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. In patients with HFimpEF after treatment, GDMT should be continued to prevent relapse of HF and LV dysfunction, even in patients who may become asymptomatic.(Level of Evidence: B-R) "

[2]

HF With Preserved Ejection Fraction. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Class I
"1. Patients with HFpEF and hypertension should have medication titrated to attain blood pressure targets in accordance with published clinical practice guidelines to prevent morbidity(Level of Evidence: C-LD) "

[2]

Class IIa
" 2. In patients with HFpEF, SGLT2i can be beneficial in decreasing HF hospitalizations and cardiovascular mortality (Level of Evidence B-R)".
'' 3. In patients with HFpEF, management of AF can be useful to improve symptoms (Level of Evidence C-EO)''

[2]

Class IIb
" 4.   I selected patients with HFpEF, MRAs may be considered to decrease hospitalizations, par-icularly among patients with LVEF on the lower end of this spectrrum Level of Evidence B-R)".
'' 5. n selected patients with HFpEF, the use of ARB may be considered to decrease hospital-zations, particularly among patients with LVEF on the lower end of this spectru(m Level of Evidence B-R)''
 ''6. In selected patients with HFpEF, ARNi may be considered to decrease hospitalizations, particularly among patients with LVEF on the lower end of this spectrum (Level of Evidence B- NR)''

[2]

Class III (No Benefit)
"7. In patients with HFpEF, routine use of nitrates or phosphodiesterase-5 inhibitors to increase activity or QOL is ineffective (Level of Evidence: B-R) "

[2]

Treatment for Heart Failure with Preserved Ejection Failure (LVEF ≥50%) [2]

Class I
Diuretics as needed
Class IIa
Sodium-glucose cotransporter-2 inhibitor.
Class IIb
Aangiotensin receptor-neprilysin inhibitor
Mineralocorticoid receptor antagonist
Angiotensin receptor blocker

Cardiac Amyloidosis. 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT)

Diagnosis

Class I
"1.   Patients for whom there is a clinical suspicion for cardiac amyloidosis should have screening for serum and urine monoclonal light chains with serum and urine immunofixation electrophoresis and serum free light chains(Level of Evidence: B-NR) "
"2.  In patients with high clinical suspicion for cardiac amyloidosis, without evidence of serum or urine monoclonal light chains, bone scintigraphy should be performed to confirm the presence of transthyretin cardiac amyloidosis (Level of Evidence: B-NR) "
"3. In patients for whom a diagnosis of transthyretin cardiac amyloidosis is made, genetic testing with TTR gene sequencing is recommended to differentiate hereditary variant from wild-type transthyretin cardiac amyloidosis(Level of Evidence: B-NR) "

[2]

Clinical suspicion for cardiac amyloidosis: LV  wall  thickness  ≥14  mm in conjunction  with  fatigue, dyspnea, or edema, especially in the context of discordance between wall thickness on echocardiogram and QRS voltage on an ECG, and in the context of aortic stenosis,  HFpEF,  carpal  tunnel  syndrome, spinal stenosis, and autonomic or sensory polyneuropathy [2]

Treatment

Class I
"1. In select patients with wild-type or variant transthyretin cardiac amyloidosis and NYHA class I to III HF symptoms, transthyretin tetramer stabilizer therapy (tafamidis) is indicated to reduce cardiovascular morbidity and mortality(Level of Evidence: B-R) "
"2. Value Statement: High Value (B- NR):  At 2020 list prices, tafamidis provides low economic value (>$180 000 per QALY gained) in patients with HF with wild-type or variant transthyretin cardiac amyloidosis

[2]

Class IIa
''3. In patients with cardiac amyloidosis and AF, anticoagulation is reasonable to reduce the risk of stroke regardless of the CHA2DS2-VASc (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (Level of Evidence: C-LD)''

[2]






Source

References

  1. 1.0 1.1 McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland J, Coats A, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam C, Lyon AR, McMurray J, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano G, Ruschitzka F, Kathrine Skibelund A (September 2021). "2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure". Eur Heart J. 42 (36): 3599–3726. doi:10.1093/eurheartj/ehab368. PMID 34447992 Check |pmid= value (help). Vancouver style error: initials (help)
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM; et al. (2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (18): e876–e894. doi:10.1161/CIR.0000000000001062. PMID 35363500 Check |pmid= value (help).
  3. 3.0 3.1 Reddy YNV, Kaye DM, Handoko ML, van de Bovenkamp AA, Tedford RJ, Keck C; et al. (2022). "Diagnosis of Heart Failure With Preserved Ejection Fraction Among Patients With Unexplained Dyspnea". JAMA Cardiol. 7 (9): 891–899. doi:10.1001/jamacardio.2022.1916. PMC 9280610 Check |pmc= value (help). PMID 35830183 Check |pmid= value (help).
  4. Ambrosy AP, Pang PS, Khan S, Konstam MA, Fonarow GC, Traver B; et al. (2013). "Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial". Eur Heart J. 34 (11): 835–43. doi:10.1093/eurheartj/ehs444. PMID 23293303.
  5. Selvaraj S, Claggett B, Pozzi A, McMurray JJV, Jhund PS, Packer M; et al. (2019). "Prognostic Implications of Congestion on Physical Examination Among Contemporary Patients With Heart Failure and Reduced Ejection Fraction: PARADIGM-HF". Circulation. 140 (17): 1369–1379. doi:10.1161/CIRCULATIONAHA.119.039920. PMID 31510768.
  6. Selvaraj S, Claggett B, Shah SJ, Anand IS, Rouleau JL, Desai AS; et al. (2019). "Utility of the Cardiovascular Physical Examination and Impact of Spironolactone in Heart Failure With Preserved Ejection Fraction". Circ Heart Fail. 12 (7): e006125. doi:10.1161/CIRCHEARTFAILURE.119.006125. PMC 6686863 Check |pmc= value (help). PMID 31220936.
  7. Caldentey G, Khairy P, Roy D, Leduc H, Talajic M, Racine N; et al. (2014). "Prognostic value of the physical examination in patients with heart failure and atrial fibrillation: insights from the AF-CHF trial (atrial fibrillation and chronic heart failure)". JACC Heart Fail. 2 (1): 15–23. doi:10.1016/j.jchf.2013.10.004. PMID 24622114.
  8. Simonavičius J, Sanders van-Wijk S, Rickenbacher P, Maeder MT, Pfister O, Kaufmann BA; et al. (2019). "Prognostic Significance of Longitudinal Clinical Congestion Pattern in Chronic Heart Failure: Insights From TIME-CHF Trial". Am J Med. 132 (9): e679–e692. doi:10.1016/j.amjmed.2019.04.010. PMID 31051151.
  9. Fudim M, Parikh KS, Dunning A, DeVore AD, Mentz RJ, Schulte PJ; et al. (2018). "Relation of Volume Overload to Clinical Outcomes in Acute Heart Failure (From ASCEND-HF)". Am J Cardiol. 122 (9): 1506–1512. doi:10.1016/j.amjcard.2018.07.023. PMC 6924269 Check |pmc= value (help). PMID 30172362.
  10. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN; et al. (2003). "Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study". Lancet. 361 (9363): 1077–83. doi:10.1016/S0140-6736(03)12892-9. PMID 12672310.
  11. Eshaghian S, Horwich TB, Fonarow GC (2006). "Relation of loop diuretic dose to mortality in advanced heart failure". Am J Cardiol. 97 (12): 1759–64. doi:10.1016/j.amjcard.2005.12.072. PMID 16765130.
  12. Gorodeski EZ, Chu EC, Reese JR, Shishehbor MH, Hsich E, Starling RC (2009). "Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure". Circ Heart Fail. 2 (4): 320–4. doi:10.1161/CIRCHEARTFAILURE.108.839076. PMID 19808355.
  13. Kittleson M, Hurwitz S, Shah MR, Nohria A, Lewis E, Givertz M; et al. (2003). "Development of circulatory-renal limitations to angiotensin-converting enzyme inhibitors identifies patients with severe heart failure and early mortality". J Am Coll Cardiol. 41 (11): 2029–35. doi:10.1016/s0735-1097(03)00417-0. PMID 12798577.
  14. Poole JE, Johnson GW, Hellkamp AS, Anderson J, Callans DJ, Raitt MH; et al. (2008). "Prognostic importance of defibrillator shocks in patients with heart failure". N Engl J Med. 359 (10): 1009–17. doi:10.1056/NEJMoa071098. PMC 2922510. PMID 18768944.
  15. Setoguchi S, Stevenson LW, Schneeweiss S (2007). "Repeated hospitalizations predict mortality in the community population with heart failure". Am Heart J. 154 (2): 260–6. doi:10.1016/j.ahj.2007.01.041. PMID 17643574.
  16. 16.0 16.1 Marume K, Noguchi T, Tateishi E, Morita Y, Miura H, Nishimura K; et al. (2020). "Prognosis and Clinical Characteristics of Dilated Cardiomyopathy With Family History via Pedigree Analysis". Circ J. 84 (8): 1284–1293. doi:10.1253/circj.CJ-19-1176. PMID 32624524 Check |pmid= value (help).
  17. 17.0 17.1 Waddell-Smith KE, Donoghue T, Oates S, Graham A, Crawford J, Stiles MK; et al. (2016). "Inpatient detection of cardiac-inherited disease: the impact of improving family history taking". Open Heart. 3 (1): e000329. doi:10.1136/openhrt-2015-000329. PMC 4762189. PMID 26925241.
  18. González-López E, Gagliardi C, Dominguez F, Quarta CC, de Haro-Del Moral FJ, Milandri A; et al. (2017). "Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths". Eur Heart J. 38 (24): 1895–1904. doi:10.1093/eurheartj/ehx043. PMID 28329248.
  19. Lousada I, Comenzo RL, Landau H, Guthrie S, Merlini G (2015). "Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium". Adv Ther. 32 (10): 920–8. doi:10.1007/s12325-015-0250-0. PMC 4635176. PMID 26498944.
  20. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F; et al. (2015). "Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy". Circulation. 131 (22): 1981–8. doi:10.1161/CIRCULATIONAHA.114.013777. PMID 25948538 : 25948538 Check |pmid= value (help).
  21. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G; et al. (2004). "Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy". Circulation. 109 (22): 2749–54. doi:10.1161/01.CIR.0000130926.51766.CC. PMID 15148277.
  22. Castaño A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A; et al. (2017). "Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement". Eur Heart J. 38 (38): 2879–2887. doi:10.1093/eurheartj/ehx350. PMC 5837725. PMID 29019612.
  23. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B; et al. (2016). "Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey)". J Am Coll Cardiol. 68 (2): 161–72. doi:10.1016/j.jacc.2016.03.596. PMC 4940135. PMID 27386769.
  24. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A; et al. (2016). "Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis". Circulation. 133 (24): 2404–12. doi:10.1161/CIRCULATIONAHA.116.021612. PMID 27143678.
  25. Brown EE, Lee YZJ, Halushka MK, Steenbergen C, Johnson NM, Almansa J; et al. (2017). "Genetic testing improves identification of transthyretin amyloid (ATTR) subtype in cardiac amyloidosis". Amyloid. 24 (2): 92–95. doi:10.1080/13506129.2017.1324418. PMID 28494620.
  26. Crawford TC, Okada DR, Magruder JT, Fraser C, Patel N, Houston BA; et al. (2018). "A Contemporary Analysis of Heart Transplantation and Bridge-to-Transplant Mechanical Circulatory Support Outcomes in Cardiac Sarcoidosis". J Card Fail. 24 (6): 384–391. doi:10.1016/j.cardfail.2018.02.009. PMID 29482029.
  27. Wu RS, Gupta S, Brown RN, Yancy CW, Wald JW, Kaiser P; et al. (2010). "Clinical outcomes after cardiac transplantation in muscular dystrophy patients". J Heart Lung Transplant. 29 (4): 432–8. doi:10.1016/j.healun.2009.08.030. PMID 19864165.
  28. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J; et al. (2001). "Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group". J Am Coll Cardiol. 37 (7): 1781–7. doi:10.1016/s0735-1097(01)01269-4. PMID 11401111.
  29. Tang WH, Girod JP, Lee MJ, Starling RC, Young JB, Van Lente F; et al. (2003). "Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure". Circulation. 108 (24): 2964–6. doi:10.1161/01.CIR.0000106903.98196.B6. PMID 14662703.
  30. Zaphiriou A, Robb S, Murray-Thomas T, Mendez G, Fox K, McDonagh T; et al. (2005). "The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study". Eur J Heart Fail. 7 (4): 537–41. doi:10.1016/j.ejheart.2005.01.022. PMID 15921792.
  31. Son CS, Kim YN, Kim HS, Park HS, Kim MS (2012). "Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches". J Biomed Inform. 45 (5): 999–1008. doi:10.1016/j.jbi.2012.04.013. PMID 22564550.
  32. Kelder JC, Cramer MJ, van Wijngaarden J, van Tooren R, Mosterd A, Moons KG; et al. (2011). "The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure". Circulation. 124 (25): 2865–73. doi:10.1161/CIRCULATIONAHA.111.019216. PMID 22104551.
  33. Booth RA, Hill SA, Don-Wauchope A, Santaguida PL, Oremus M, McKelvie R; et al. (2014). "Performance of BNP and NT-proBNP for diagnosis of heart failure in primary care patients: a systematic review". Heart Fail Rev. 19 (4): 439–51. doi:10.1007/s10741-014-9445-8. PMID 24969534.
  34. Dao Q, Krishnaswamy P, Kazanegra R, Harrison A, Amirnovin R, Lenert L; et al. (2001). "Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting". J Am Coll Cardiol. 37 (2): 379–85. doi:10.1016/s0735-1097(00)01156-6. PMID 11216950.
  35. Davis M, Espiner E, Richards G, Billings J, Town I, Neill A; et al. (1994). "Plasma brain natriuretic peptide in assessment of acute dyspnoea". Lancet. 343 (8895): 440–4. doi:10.1016/s0140-6736(94)92690-5. PMID 7905953.
  36. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P; et al. (2002). "Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure". N Engl J Med. 347 (3): 161–7. doi:10.1056/NEJMoa020233. PMID 12124404. Review in: J Fam Pract. 2002 Oct;51(10):816 Review in: ACP J Club. 2003 Jan-Feb;138(1):23
  37. Januzzi JL, Chen-Tournoux AA, Moe G (2008). "Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms". Am J Cardiol. 101 (3A): 29–38. doi:10.1016/j.amjcard.2007.11.017. PMID 18243855.
  38. 38.0 38.1 38.2 Santaguida PL, Don-Wauchope AC, Ali U, Oremus M, Brown JA, Bustamam A; et al. (2014). "Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review". Heart Fail Rev. 19 (4): 507–19. doi:10.1007/s10741-014-9444-9. PMID 25052418.
  39. Hill SA, Booth RA, Santaguida PL, Don-Wauchope A, Brown JA, Oremus M; et al. (2014). "Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence". Heart Fail Rev. 19 (4): 421–38. doi:10.1007/s10741-014-9447-6. PMID 24957908.
  40. 40.0 40.1 van Kimmenade RR, Januzzi JL, Ellinor PT, Sharma UC, Bakker JA, Low AF; et al. (2006). "Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure". J Am Coll Cardiol. 48 (6): 1217–24. doi:10.1016/j.jacc.2006.03.061. PMID 16979009.
  41. 41.0 41.1 41.2 Bettencourt P, Azevedo A, Pimenta J, Friões F, Ferreira S, Ferreira A (2004). "N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients". Circulation. 110 (15): 2168–74. doi:10.1161/01.CIR.0000144310.04433.BE. PMID 15451800.
  42. 42.0 42.1 Cheng V, Kazanagra R, Garcia A, Lenert L, Krishnaswamy P, Gardetto N; et al. (2001). "A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study". J Am Coll Cardiol. 37 (2): 386–91. doi:10.1016/s0735-1097(00)01157-8. PMID 11216951.
  43. 43.0 43.1 Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M, ADHERE Scientific Advisory Committee and Investigators (2007). "Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure". J Am Coll Cardiol. 49 (19): 1943–50. doi:10.1016/j.jacc.2007.02.037. PMID 17498579.
  44. 44.0 44.1 44.2 Logeart D, Thabut G, Jourdain P, Chavelas C, Beyne P, Beauvais F; et al. (2004). "Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure". J Am Coll Cardiol. 43 (4): 635–41. doi:10.1016/j.jacc.2003.09.044. PMID 14975475.
  45. 45.0 45.1 Maisel A, Hollander JE, Guss D, McCullough P, Nowak R, Green G; et al. (2004). "Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath". J Am Coll Cardiol. 44 (6): 1328–33. doi:10.1016/j.jacc.2004.06.015. PMID 15364340.
  46. 46.0 46.1 Zairis MN, Tsiaousis GZ, Georgilas AT, Makrygiannis SS, Adamopoulou EN, Handanis SM; et al. (2010). "Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure". Int J Cardiol. 141 (3): 284–90. doi:10.1016/j.ijcard.2008.12.017. PMID 19157603.
  47. 47.0 47.1 Dhaliwal AS, Deswal A, Pritchett A, Aguilar D, Kar B, Souchek J; et al. (2009). "Reduction in BNP levels with treatment of decompensated heart failure and future clinical events". J Card Fail. 15 (4): 293–9. doi:10.1016/j.cardfail.2008.11.007. PMID 19398076.
  48. 48.0 48.1 48.2 O'Connor CM, Hasselblad V, Mehta RH, Tasissa G, Califf RM, Fiuzat M; et al. (2010). "Triage after hospitalization with advanced heart failure: the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score". J Am Coll Cardiol. 55 (9): 872–8. doi:10.1016/j.jacc.2009.08.083. PMC 3835158. PMID 20185037.
  49. 49.0 49.1 O'Brien RJ, Squire IB, Demme B, Davies JE, Ng LL (2003). "Pre-discharge, but not admission, levels of NT-proBNP predict adverse prognosis following acute LVF". Eur J Heart Fail. 5 (4): 499–506. doi:10.1016/s1388-9842(03)00098-9. PMID 12921811.
  50. 50.0 50.1 Cohen-Solal A, Logeart D, Huang B, Cai D, Nieminen MS, Mebazaa A (2009). "Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure". J Am Coll Cardiol. 53 (25): 2343–8. doi:10.1016/j.jacc.2009.02.058. PMID 19539144.
  51. 51.0 51.1 Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M; et al. (2014). "A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score". Heart. 100 (2): 115–25. doi:10.1136/heartjnl-2013-303632. PMID 24179162.
  52. 52.0 52.1 Flint KM, Allen LA, Pham M, Heidenreich PA (2014). "B-type natriuretic peptide predicts 30-day readmission for heart failure but not readmission for other causes". J Am Heart Assoc. 3 (3): e000806. doi:10.1161/JAHA.114.000806. PMC 4309072. PMID 24922626.
  53. 53.0 53.1 Kociol RD, Horton JR, Fonarow GC, Reyes EM, Shaw LK, O'Connor CM; et al. (2011). "Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims". Circ Heart Fail. 4 (5): 628–36. doi:10.1161/CIRCHEARTFAILURE.111.962290. PMC 3465672. PMID 21743005.
  54. 54.0 54.1 Kociol RD, McNulty SE, Hernandez AF, Lee KL, Redfield MM, Tracy RP; et al. (2013). "Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure". Circ Heart Fail. 6 (2): 240–5. doi:10.1161/CIRCHEARTFAILURE.112.969246. PMC 3865520. PMID 23250981.
  55. 55.0 55.1 Verdiani V, Ognibene A, Rutili MS, Lombardo C, Bacci F, Terreni A; et al. (2008). "NT-ProBNP reduction percentage during hospital stay predicts long-term mortality and readmission in heart failure patients". J Cardiovasc Med (Hagerstown). 9 (7): 694–9. doi:10.2459/JCM.0b013e3282f447ae. PMID 18545069.
  56. 56.0 56.1 Bayés-Genís A, Lopez L, Zapico E, Cotes C, Santaló M, Ordonez-Llanos J; et al. (2005). "NT-ProBNP reduction percentage during admission for acutely decompensated heart failure predicts long-term cardiovascular mortality". J Card Fail. 11 (5 Suppl): S3–8. doi:10.1016/j.cardfail.2005.04.006. PMID 15948093.
  57. Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, Francesconi C; et al. (2013). "PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial". J Am Coll Cardiol. 62 (15): 1365–72. doi:10.1016/j.jacc.2013.05.069. PMID 23810874.
  58. Ledwidge M, Gallagher J, Conlon C, Tallon E, O'Connell E, Dawkins I; et al. (2013). "Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial". JAMA. 310 (1): 66–74. doi:10.1001/jama.2013.7588. PMID 23821090. Review in: Evid Based Med. 2014 Jun;19(3):107
  59. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM; et al. (2014). "The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing". Genet Med. 16 (8): 601–8. doi:10.1038/gim.2013.204. PMID 24503780.
  60. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R; et al. (2015). "Atlas of the clinical genetics of human dilated cardiomyopathy". Eur Heart J. 36 (18): 1123–35a. doi:10.1093/eurheartj/ehu301. PMID 25163546.
  61. Badgett RG, Mulrow CD, Otto PM, Ramírez G (1996). "How well can the chest radiograph diagnose left ventricular dysfunction?". J Gen Intern Med. 11 (10): 625–34. doi:10.1007/BF02599031. PMID 8945695.
  62. Knudsen CW, Omland T, Clopton P, Westheim A, Abraham WT, Storrow AB; et al. (2004). "Diagnostic value of B-Type natriuretic peptide and chest radiographic findings in patients with acute dyspnea". Am J Med. 116 (6): 363–8. doi:10.1016/j.amjmed.2003.10.028. PMID 15006584. Review in: ACP J Club. 2004 Sep-Oct;141(2):48
  63. Tribouilloy C, Rusinaru D, Mahjoub H, Goissen T, Lévy F, Peltier M (2008). "Impact of echocardiography in patients hospitalized for heart failure: a prospective observational study". Arch Cardiovasc Dis. 101 (7–8): 465–73. doi:10.1016/j.acvd.2008.06.012. PMID 18848689.
  64. Doughty RN, Whalley GA, Gamble G, MacMahon S, Sharpe N (1997). "Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Australia-New Zealand Heart Failure Research Collaborative Group". J Am Coll Cardiol. 29 (5): 1060–6. doi:10.1016/s0735-1097(97)00012-0. PMID 9120160 : 9120160 Check |pmid= value (help).
  65. Duncker D, König T, Hohmann S, Bauersachs J, Veltmann C (2017). "Avoiding Untimely Implantable Cardioverter/Defibrillator Implantation by Intensified Heart Failure Therapy Optimization Supported by the Wearable Cardioverter/Defibrillator-The PROLONG Study". J Am Heart Assoc. 6 (1). doi:10.1161/JAHA.116.004512. PMC 5523634. PMID 28096098.
  66. Januzzi JL, Prescott MF, Butler J, Felker GM, Maisel AS, McCague K; et al. (2019). "Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction". JAMA. 322 (11): 1085–1095. doi:10.1001/jama.2019.12821. PMC 6724151 Check |pmc= value (help). PMID 31475295.
  67. Solomon SD, Glynn RJ, Greaves S, Ajani U, Rouleau JL, Menapace F; et al. (2001). "Recovery of ventricular function after myocardial infarction in the reperfusion era: the healing and early afterload reducing therapy study". Ann Intern Med. 134 (6): 451–8. doi:10.7326/0003-4819-134-6-200103200-00009. PMID 11255520.
  68. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG; et al. (2000). "Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?". Eur Heart J. 21 (16): 1387–96. doi:10.1053/euhj.2000.2011. PMID 10952828.
  69. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU; et al. (2002). "Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy". Am J Cardiol. 90 (1): 29–34. doi:10.1016/s0002-9149(02)02381-0. PMID 12088775.
  70. Longmore DB, Klipstein RH, Underwood SR, Firmin DN, Hounsfield GN, Watanabe M; et al. (1985). "Dimensional accuracy of magnetic resonance in studies of the heart". Lancet. 1 (8442): 1360–2. doi:10.1016/s0140-6736(85)91786-6. PMID 2861314.
  71. Doherty JU, Kort S, Mehran R, Schoenhagen P, Soman P, Dehmer GJ; et al. (2019). "ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons". J Am Coll Cardiol. 73 (4): 488–516. doi:10.1016/j.jacc.2018.10.038. PMID 30630640.
  72. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D; et al. (1996). "Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions". Am J Cardiol. 77 (10): 843–50. doi:10.1016/s0002-9149(97)89179-5. PMID 8623737.
  73. Fu H, Wang X, Diao K, Huang S, Liu H, Gao Y; et al. (2019). "CT compared to MRI for functional evaluation of the right ventricle: a systematic review and meta-analysis". Eur Radiol. 29 (12): 6816–6828. doi:10.1007/s00330-019-06228-2. PMID 31134368.
  74. Kaniewska M, Schuetz GM, Willun S, Schlattmann P, Dewey M (2017). "Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis". Eur Radiol. 27 (4): 1640–1659. doi:10.1007/s00330-016-4513-1. PMID 27510625.
  75. Takx RA, Moscariello A, Schoepf UJ, Barraza JM, Nance JW, Bastarrika G; et al. (2012). "Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI". Eur J Radiol. 81 (4): e598–604. doi:10.1016/j.ejrad.2011.07.001. PMID 21831552.
  76. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH; et al. (2001). "Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload". Eur Heart J. 22 (23): 2171–9. doi:10.1053/euhj.2001.2822. PMID 11913479.
  77. Bruder O, Schneider S, Nothnagel D, Dill T, Hombach V, Schulz-Menger J; et al. (2009). "EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase". J Am Coll Cardiol. 54 (15): 1457–66. doi:10.1016/j.jacc.2009.07.003. PMID 19682818.
  78. Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G; et al. (2013). "European Cardiovascular Magnetic Resonance (EuroCMR) registry--multi national results from 57 centers in 15 countries". J Cardiovasc Magn Reson. 15: 9. doi:10.1186/1532-429X-15-9. PMC 3564740. PMID 23331632.
  79. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM; et al. (2013). "Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis". JACC Cardiovasc Imaging. 6 (4): 488–97. doi:10.1016/j.jcmg.2012.11.013. PMID 23498672.
  80. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS; et al. (2017). "Magnetic Resonance in Transthyretin Cardiac Amyloidosis". J Am Coll Cardiol. 70 (4): 466–477. doi:10.1016/j.jacc.2017.05.053. PMID 28728692.
  81. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K; et al. (2013). "Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy". JACC Cardiovasc Imaging. 6 (4): 475–84. doi:10.1016/j.jcmg.2012.08.019. PMID 23498674.
  82. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK, Flett AS; et al. (2015). "Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload". J Magn Reson Imaging. 41 (6): 1505–11. doi:10.1002/jmri.24727. PMID 25104503.
  83. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G; et al. (2013). "Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping". Circ Cardiovasc Imaging. 6 (3): 392–8. doi:10.1161/CIRCIMAGING.112.000070. PMID 23564562.
  84. Elhendy A, Sozzi F, van Domburg RT, Bax JJ, Schinkel AF, Roelandt JR; et al. (2005). "Effect of myocardial ischemia during dobutamine stress echocardiography on cardiac mortality in patients with heart failure secondary to ischemic cardiomyopathy". Am J Cardiol. 96 (4): 469–73. doi:10.1016/j.amjcard.2005.04.004. PMID 16098295.
  85. Miller WL, Hodge DO, Tointon SK, Rodeheffer RJ, Nelson SM, Gibbons RJ (2004). "Relationship of myocardial perfusion imaging findings to outcome of patients with heart failure and suspected ischemic heart disease". Am Heart J. 147 (4): 714–20. doi:10.1016/j.ahj.2003.10.045. PMID 15077089.
  86. Chow BJW, Coyle D, Hossain A, Laine M, Hanninen H, Ukkonen H; et al. (2021). "Computed tomography coronary angiography for patients with heart failure (CTA-HF): a randomized controlled trial (IMAGE-HF 1C)". Eur Heart J Cardiovasc Imaging. 22 (9): 1083–1090. doi:10.1093/ehjci/jeaa109. PMID 32588042 Check |pmid= value (help).
  87. Ferreira JP, Rossignol P, Demissei B, Sharma A, Girerd N, Anker SD; et al. (2018). "Coronary angiography in worsening heart failure: determinants, findings and prognostic implications". Heart. 104 (7): 606–613. doi:10.1136/heartjnl-2017-311750. PMID 28798192.
  88. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002). "Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis". J Am Coll Cardiol. 39 (7): 1151–8. doi:10.1016/s0735-1097(02)01726-6. PMID 11923039.
  89. D'Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R; et al. (2009). "Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial". JACC Cardiovasc Imaging. 2 (9): 1060–8. doi:10.1016/j.jcmg.2009.02.017. PMID 19761983.
  90. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC, Cerqueira MD; et al. (2013). "Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium". Circ Cardiovasc Imaging. 6 (3): 363–72. doi:10.1161/CIRCIMAGING.112.000138. PMID 23595888.
  91. Orlandini A, Castellana N, Pascual A, Botto F, Cecilia Bahit M, Chacon C; et al. (2015). "Myocardial viability for decision-making concerning revascularization in patients with left ventricular dysfunction and coronary artery disease: a meta-analysis of non-randomized and randomized studies". Int J Cardiol. 182: 494–9. doi:10.1016/j.ijcard.2015.01.025. PMID 25617608.
  92. Desideri A, Cortigiani L, Christen AI, Coscarelli S, Gregori D, Zanco P; et al. (2005). "The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction". J Am Coll Cardiol. 46 (7): 1264–9. doi:10.1016/j.jacc.2005.06.057. PMID 16198841.
  93. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U; et al. (2007). "The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology". Circulation. 116 (19): 2216–33. doi:10.1161/CIRCULATIONAHA.107.186093. PMID 17959655.
  94. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M; et al. (2018). "Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy". N Engl J Med. 379 (11): 1007–1016. doi:10.1056/NEJMoa1805689. PMID 30145929.
  95. Binanay C, Califf RM, Hasselblad V, O'Connor CM, Shah MR, Sopko G; et al. (2005). "Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial". JAMA. 294 (13): 1625–33. doi:10.1001/jama.294.13.1625. PMID 16204662.
  96. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O'Connor CM, Sopko G; et al. (2005). "Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials". JAMA. 294 (13): 1664–70. doi:10.1001/jama.294.13.1664. PMID 16204666. Review in: ACP J Club. 2006 May-Jun;144(3):70
  97. Deckers JW, Hare JM, Baughman KL (1992). "Complications of transvenous right ventricular endomyocardial biopsy in adult patients with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center". J Am Coll Cardiol. 19 (1): 43–7. doi:10.1016/0735-1097(92)90049-s. PMID 1729344.
  98. Veress G, Bruce CJ, Kutzke K, Andreen K, Click RL, Scott CG; et al. (2010). "Acute thrombus formation as a complication of right ventricular biopsy". J Am Soc Echocardiogr. 23 (10): 1039–44. doi:10.1016/j.echo.2010.07.006. PMID 20868954.
  99. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW; et al. (2011). "Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial". Lancet. 377 (9766): 658–66. doi:10.1016/S0140-6736(11)60101-3. PMID 21315441.
  100. Adamson PB, Abraham WT, Bourge RC, Costanzo MR, Hasan A, Yadav C; et al. (2014). "Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction". Circ Heart Fail. 7 (6): 935–44. doi:10.1161/CIRCHEARTFAILURE.113.001229. PMID 25286913.
  101. Givertz MM, Stevenson LW, Costanzo MR, Bourge RC, Bauman JG, Ginn G; et al. (2017). "Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction". J Am Coll Cardiol. 70 (15): 1875–1886. doi:10.1016/j.jacc.2017.08.010. PMID 28982501.
  102. 102.0 102.1 Lindenfeld J, Zile MR, Desai AS, Bhatt K, Ducharme A, Horstmanshof D; et al. (2021). "Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial". Lancet. 398 (10304): 991–1001. doi:10.1016/S0140-6736(21)01754-2. PMID 34461042 Check |pmid= value (help).
  103. Martinson M, Bharmi R, Dalal N, Abraham WT, Adamson PB (2017). "Pulmonary artery pressure-guided heart failure management: US cost-effectiveness analyses using the results of the CHAMPION clinical trial". Eur J Heart Fail. 19 (5): 652–660. doi:10.1002/ejhf.642. PMC 5434920. PMID 27647784.
  104. Sandhu AT, Goldhaber-Fiebert JD, Owens DK, Turakhia MP, Kaiser DW, Heidenreich PA (2016). "Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure". JACC Heart Fail. 4 (5): 368–75. doi:10.1016/j.jchf.2015.12.015. PMC 4851610. PMID 26874380.
  105. Schmier JK, Ong KL, Fonarow GC (2017). "Cost-Effectiveness of Remote Cardiac Monitoring With the CardioMEMS Heart Failure System". Clin Cardiol. 40 (7): 430–436. doi:10.1002/clc.22696. PMC 6490396. PMID 28272808.
  106. Ahmed A, Aronow WS, Fleg JL (2006). "Higher New York Heart Association classes and increased mortality and hospitalization in patients with heart failure and preserved left ventricular function". Am Heart J. 151 (2): 444–50. doi:10.1016/j.ahj.2005.03.066. PMC 2771182. PMID 16442912.
  107. Muntwyler J, Abetel G, Gruner C, Follath F (2002). "One-year mortality among unselected outpatients with heart failure". Eur Heart J. 23 (23): 1861–6. doi:10.1053/euhj.2002.3282. PMID 12445535.
  108. 108.0 108.1 Brawner CA, Shafiq A, Aldred HA, Ehrman JK, Leifer ES, Selektor Y; et al. (2015). "Comprehensive analysis of cardiopulmonary exercise testing and mortality in patients with systolic heart failure: the Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project". J Card Fail. 21 (9): 710–8. doi:10.1016/j.cardfail.2015.06.001. PMID 26067685.
  109. 109.0 109.1 Corrà U, Giordano A, Mezzani A, Gnemmi M, Pistono M, Caruso R; et al. (2012). "Cardiopulmonary exercise testing and prognosis in heart failure due to systolic left ventricular dysfunction: a validation study of the European Society of Cardiology Guidelines and Recommendations (2008) and further developments". Eur J Prev Cardiol. 19 (1): 32–40. doi:10.1177/1741826710393994. PMID 21450614.
  110. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA; et al. (2013). "The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary". J Heart Lung Transplant. 32 (2): 157–87. doi:10.1016/j.healun.2012.09.013. PMID 23352391.
  111. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR (1991). "Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure". Circulation. 83 (3): 778–86. doi:10.1161/01.cir.83.3.778. PMID 1999029.
  112. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA; et al. (2016). "The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update". J Heart Lung Transplant. 35 (1): 1–23. doi:10.1016/j.healun.2015.10.023. PMID 26776864.
  113. Alahdab MT, Mansour IN, Napan S, Stamos TD (2009). "Six minute walk test predicts long-term all-cause mortality and heart failure rehospitalization in African-American patients hospitalized with acute decompensated heart failure". J Card Fail. 15 (2): 130–5. doi:10.1016/j.cardfail.2008.10.006. PMID 19254672.
  114. Bittner V, Weiner DH, Yusuf S, Rogers WJ, McIntyre KM, Bangdiwala SI; et al. (1993). "Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators". JAMA. 270 (14): 1702–7. PMID 8411500.
  115. Boxer R, Kleppinger A, Ahmad A, Annis K, Hager D, Kenny A (2010). "The 6-minute walk is associated with frailty and predicts mortality in older adults with heart failure". Congest Heart Fail. 16 (5): 208–13. doi:10.1111/j.1751-7133.2010.00151.x. PMC 3027222. PMID 20887617.
  116. Forman DE, Fleg JL, Kitzman DW, Brawner CA, Swank AM, McKelvie RS; et al. (2012). "6-min walk test provides prognostic utility comparable to cardiopulmonary exercise testing in ambulatory outpatients with systolic heart failure". J Am Coll Cardiol. 60 (25): 2653–61. doi:10.1016/j.jacc.2012.08.1010. PMC 3766897. PMID 23177293.
  117. Grundtvig M, Eriksen-Volnes T, Ørn S, Slind EK, Gullestad L (2020). "6 min walk test is a strong independent predictor of death in outpatients with heart failure". ESC Heart Fail. 7 (5): 2904–2911. doi:10.1002/ehf2.12900. PMC 7524091 Check |pmc= value (help). PMID 32677748 Check |pmid= value (help).
  118. Keteyian SJ, Patel M, Kraus WE, Brawner CA, McConnell TR, Piña IL; et al. (2016). "Variables Measured During Cardiopulmonary Exercise Testing as Predictors of Mortality in Chronic Systolic Heart Failure". J Am Coll Cardiol. 67 (7): 780–9. doi:10.1016/j.jacc.2015.11.050. PMC 4761107. PMID 26892413.
  119. McCabe N, Butler J, Dunbar SB, Higgins M, Reilly C (2017). "Six-minute walk distance predicts 30-day readmission after acute heart failure hospitalization". Heart Lung. 46 (4): 287–292. doi:10.1016/j.hrtlng.2017.04.001. PMID 28551310.
  120. Ramalho SHR, Cipriano Junior G, Vieira PJC, Nakano EY, Winkelmann ER, Callegaro CC; et al. (2019). "Inspiratory muscle strength and six-minute walking distance in heart failure: Prognostic utility in a 10 years follow up cohort study". PLoS One. 14 (8): e0220638. doi:10.1371/journal.pone.0220638. PMC 6675323 Check |pmc= value (help). PMID 31369636.
  121. Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J; et al. (2012). "An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea". Am J Respir Crit Care Med. 185 (4): 435–52. doi:10.1164/rccm.201111-2042ST. PMC 5448624. PMID 22336677.
  122. Reddy YNV, Olson TP, Obokata M, Melenovsky V, Borlaug BA (2018). "Hemodynamic Correlates and Diagnostic Role of Cardiopulmonary Exercise Testing in Heart Failure With Preserved Ejection Fraction". JACC Heart Fail. 6 (8): 665–675. doi:10.1016/j.jchf.2018.03.003. PMC 6076329. PMID 29803552.
  123. Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM (1997). "Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation". Circulation. 95 (12): 2660–7. doi:10.1161/01.cir.95.12.2660. PMID 9193435.
  124. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB; et al. (2006). "The Seattle Heart Failure Model: prediction of survival in heart failure". Circulation. 113 (11): 1424–33. doi:10.1161/CIRCULATIONAHA.105.584102. PMID 16534009.
  125. Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB; et al. (2013). "Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies". Eur Heart J. 34 (19): 1404–13. doi:10.1093/eurheartj/ehs337. PMID 23095984.
  126. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB; et al. (2006). "Predictors of mortality and morbidity in patients with chronic heart failure". Eur Heart J. 27 (1): 65–75. doi:10.1093/eurheartj/ehi555. PMID 16219658.
  127. Wedel H, McMurray JJ, Lindberg M, Wikstrand J, Cleland JG, Cornel JH; et al. (2009). "Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide". Eur J Heart Fail. 11 (3): 281–91. doi:10.1093/eurjhf/hfn046. PMC 2645061. PMID 19168876.
  128. Simpson J, Jhund PS, Lund LH, Padmanabhan S, Claggett BL, Shen L; et al. (2020). "Prognostic Models Derived in PARADIGM-HF and Validated in ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity in Chronic Heart Failure". JAMA Cardiol. 5 (4): 432–441. doi:10.1001/jamacardio.2019.5850. PMC 6990745 Check |pmc= value (help). PMID 31995119.
  129. O'Connor CM, Whellan DJ, Wojdyla D, Leifer E, Clare RM, Ellis SJ; et al. (2012). "Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: the HF-ACTION predictive risk score model". Circ Heart Fail. 5 (1): 63–71. doi:10.1161/CIRCHEARTFAILURE.111.963462. PMC 3692371. PMID 22114101.
  130. O'Connor C, Fiuzat M, Mulder H, Coles A, Ahmad T, Ezekowitz JA; et al. (2019). "Clinical factors related to morbidity and mortality in high-risk heart failure patients: the GUIDE-IT predictive model and risk score". Eur J Heart Fail. 21 (6): 770–778. doi:10.1002/ejhf.1450. PMC 6830509 Check |pmc= value (help). PMID 30919549.
  131. Komajda M, Carson PE, Hetzel S, McKelvie R, McMurray J, Ptaszynska A; et al. (2011). "Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE)". Circ Heart Fail. 4 (1): 27–35. doi:10.1161/CIRCHEARTFAILURE.109.932996. PMID 21068341.
  132. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR; et al. (2020). "Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction". JACC Heart Fail. 8 (1): 12–21. doi:10.1016/j.jchf.2019.06.013. PMID 31606361.
  133. Fonarow GC, Adams KF, Abraham WT, Yancy CW, Boscardin WJ, ADHERE Scientific Advisory Committee, Study Group, and Investigators (2005). "Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis". JAMA. 293 (5): 572–80. doi:10.1001/jama.293.5.572. PMID 15687312. Review in: ACP J Club. 2005 Jul-Aug;143(1):25
  134. Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED; et al. (2010). "A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program". Circ Cardiovasc Qual Outcomes. 3 (1): 25–32. doi:10.1161/CIRCOUTCOMES.109.854877. PMID 20123668.
  135. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV (2003). "Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model". JAMA. 290 (19): 2581–7. doi:10.1001/jama.290.19.2581. PMID 14625335. Review in: ACP J Club. 2004 May-Jun;140(3):80
  136. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW (May 2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (18): e895–e1032. doi:10.1161/CIR.0000000000001063. PMID 35363499 Check |pmid= value (help).

Template:WikiDoc Sources